Эллиптические кривые

Уравнение Вейерштрасса $y^2 + a_1 \cdot x \cdot y + a_3 \cdot y = x^3 + a_2 \cdot x^2 + a_4 \cdot x + a_6$ (1)

 $a \in F$ – числовое поле. E/F – элл. кривая над полем F, включает точку $O = (\mathbf{x}, \infty)$.

Условие невырожденности точки Р= (x_o, y_o) : $\frac{\partial g}{\partial x}(x_o, y_o) \neq 0$ или $\frac{\partial g}{\partial y}(x_o, y_o) \neq 0$,

где $g = y^2 + a_1 \cdot x \cdot y + a_3 \cdot y - (x^3 + a_2 \cdot x^2 + a_4 \cdot x + a_6).$

Любая E/F при char(F) > 3 изоморфна кривой $y^2 = x^3 \ a \cdot x + b$ (2)

Необходимое и достаточное условия невырожденности кривой:

дискриминант полинома $f(x) = x^3 a \cdot x + b$ $\Delta f(x) \neq 0$.

Дискриминант полинома $f(x) = a_0 + a_1 \cdot x$... $a \cdot x^n$ равен $\Delta f(x) = a_n^{2n-2} \prod_{i=j} (\alpha_i - \alpha_j)$.

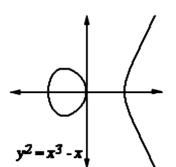
$$\Delta f(x) = -4a^3 - 27b^2 \neq 0$$

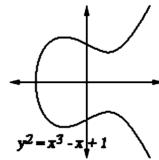
 $\Delta > 0$

 $\Delta < 0$

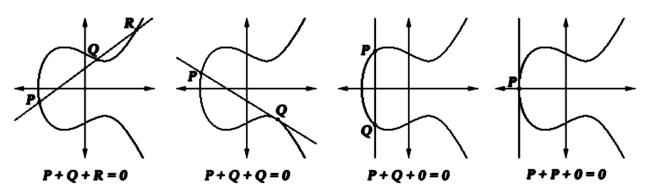
иногда

$$\Delta' = -16(4a^3 + 27b^2) \neq 0$$





Сложение точек эллиптической кривой



Уравнение прямой $l: y-y_1 = \lambda \cdot (x-x_1)$.

Если $P \neq Q$, то $y - y_2 = \lambda \cdot (x - x_2)$ и $\lambda = (y_1 - y_2) / (x_1 - x_2)$.

Если P = Q, то $\lambda = (3x_1^2 + a)/2y_1$

$$P + Q = -R = \begin{bmatrix} \lambda^2 - x_1 - x_2, & -y_1 + \lambda \cdot (2x_1 - \lambda^2 + x_2) \end{bmatrix}$$