МОСКОВСКИЙ АВИАЦムОННЫЙ ИНСТИТУТ

"ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И МИКРОІІРОЦЕССОРНАЯ ТЕХНИКА"

$681.142(075)$
 （C） Московский авиационный институт，І991
 M－545

удК：681．325．5：62I．382．049．77＋681．322（075）

Авторы－составители：Б．С．Мельников，А．В．Щеглов
Методические указания к курсовой работе по дисциплине＂Вычисли－ тельные системы и микропроцессорная техника＂／Авт．－сост．： Б．С．Мельников，А．В．Щеглов．－М．：Изд－во МАИ，I99I．－ 36 с．： ил．

Методические указания предназначены для студентов факульте－ та радиоэлектроники летательных аппаратов，выполняюцих курсовую работу по писциплине＂Вычислительные системы и микропроцессорная техника＂．

Определяются цели и зядачи работы，направленные на закрепле－ ние у студентов знаний и навыков по построению цифровых устройств на современной элементной базе，порядок выполнения работы，требо－ вания к оформлению записки и порядок защиты．

Раооматрпваетая пример построения цифрового устройства，на котором демонстрируется подход к выполнению курсовой работы．

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КЧРСОВОЙ РАБОТЕ
ПО ДИСЦИПЛИНЕ＂ВАपИСЛИТЕЛЬНЫЕ СИСТЕМВ
И МИКРОПРОЦЕССОРНАЯ ТЕХНИКА＂

Мельников Борис Сергеевич
＂Іеглов Александр Васильевич
Редактор Г．Н．Борисова
Техн．редактор B．H．Горячева
Подписано в печать $0.5 . \cap$ ． 91
Бум．офсетная．Формат 60×84 I／I6．Печать офсетная
Уол．печ．л．2，09 ．Уч．－изд．л．2，12．Тираж 500
Зак．243I／I76．Цена 20 к．

[^0]
工．ТРЕБОВАНИЯ К ВЫПОІНЕНИЮ И ОФОРМЛЕНИО КУРСОВОЙ РАБОТЫ

I．I．ЦЕЈБ И ЗАДАЧИ КТРСОВОЙ РАБОТЫ

Курсовая работа по дпоциплине＂Вычиолительные системы и мик－ ропроцесоорная техника＂ппособствует развдтио у отудентов навыков проектированпя цифровнх уотроиств на современно甘 әлементнон базе （ БИС п микропроцессорах）．Она помогает звкрепить полученные ранее теоретичеокие знания по оптимальному поотроенио разрабятмваемвх уотронотв п микропроцессорных вычиолителен п примененио этих зна－ нй для решения неотандартных задач，ранее не описанннх в литера－ тype．

Необходимо не только поотропть реальное работахацее уотроиот－ во，но п доказать，что это уотронотво，в некотором омыоле，являет－ ся наилучшим－наиболее просто решапиим поотавленнуо задачу，по－ этому многовариантнооть решения являетая обязательным уоловием， позволяшим достигнуть поотавленной в работе дели．

I．2．ЗАДАНИЕ HA KYPCOBVIO PAБOTV

Задание выдаетоя в течение первой недели преподавателем－пон－ оультантом на вводной лекции，на которой кажыыи отудент получает индивидуальное задание на куроовуь работу．В задании указываетоя дата вндачи и защиты работы，приводятая походные данные к разраба－ тываемому уотронотву．

Воякое цифровое уотройотво олукит для преобразовавия входной информапии в выходнуш，поэтому содержанием главной чаоти задания явллетоя описание входнои，выходноу информации п требуемого зако－ на преобразования．Возможнн формы зядания в ваде：оловесно市 форму－ лировки，формуль преобразования，таблиц или графиков，эшор непря－ жении，ахемв алгоритма п др．

Как правило，главная часть задания сопровохдаетоя вопомога－ тедьными требованиями к проектируемому устройству．К нам мохно от－ нести：

I）онотродействие，время задерики на формирование выходных оигналов и тактовуп честоту уотро甘отва；
2) споооб апнхронизации о поточником и потребителем внформации:
3) наличие внутренней индикации;
4) опособы охемного оамоконтроля работоспоообности устроиства;
5) потребляемуо мощнооть;
6) ограничения в выборе элементнои базы;
7) наличие әлементов ручного управленая - кнопок, тумблеров, переклочателей;
8) характер питания (автономное, общее);
9) инициализациь уотронотва при включении питания и т.д.

Некоторне вопомогательнне требования могут не указнватьоя. В этом случяе студент либо уточняет эти требования вместе с преподаватөлем, либо аргументированно выдвигает эти требования самоотонтельно.

Основная группа тем, выдаваемнх преподавателем, связана о разработкои специализированных уотройтв обработки информации о различнвмп законамд преобразования входных кодов в выходные. Например, темы могут быть сформулированы следуюпим образом:
I. На вход уотройства приходит код $A\{I: 64\}$. Определить в этом коде комбинации вида IIOII п уотановить номера разрядов, где раоположены вули этих комбинации.
2. Дан паряллельный код А $\{I: 64\}$. Разработать уотроиатво, формирупиее разнооть чиола единиц и нулей кода, и выразить эту разность в прамом коде.

Этот спиоок можно продолжить другими темами, в которьох зядартся различнне законы преобразования кодов. Например, возможна разработка уотройотв для определения числа одинаковах кодов из ста приходящих на его вход параллельных кодов, кода с максимальным чиоловым эквивалентом среди множества двоичных позиционньх кодов 00 знаком или без него и т.д. Все эти темы связаны с задачами специального вида обработки входной информации.

Наряду с нимд могут выдаваться темы, связанные с разработкой отдельных узлов ЭВМ: арифетдчеоких уотройотв, множительных уотронотв о различными способами выполнения умножения, преобразователей деоятичной пнформации в двоичную и обратно, интерфейоных уотроиотв ввода-вывода инф̆ормации и связи с внешними устройствами (преобразователями аналог-код, код-аналог, иополнительными уотройствами и т.Д.). Некоторые отуденты самостоятельно изготавливают пероональнне компьютеры. В этом олучае тема задания может отра4

жать интересы студента в этой области и содержать разработку узлов этого компьютера.

Тема задания может определяться танже п тематинои научно-иоследовательской работы студентов на кафедрах или СКБ, если она овязана о поотроение̋м цифровых вкчполителей и по овоему уровни не ниже отандартного задания на проектирование по дисциплине "Вычиолительнне оистемы и микропроцесєорная техника".

士.3. ПОРЯДНК ВЫПОЛНЕНИЯ КУРСОВОИ РАБОТЫ

Работа о учетом многовариантнооти поотроения устроиотва вклочает в себя следуюиие этапы.

I.3.I. Уточнение задания

На этом этапе работы студент должен проанализировать задание, уточнить оведения о характериотиках и параметрах проектируемого устройотва и определить дополнительнур информациш, необходимую для реализации уотройотва в виде технического макета. Эта чаоть работы является наиболее ответственнои, так как в правильной поотановке зядачи оодержитоя 50% ее решения.

I.3.2. Выбор направления и обоуждение вариантов решения затачи

Прежде всего необходимо решить, к какому классу отнооитоя разрабатываемое уотройотво - к класоу комбинадионных иля к клаооу региотровых (автоматннх) устронотв. Еоли оно может быть поотроено как в комбинационном, так и региатровом исполнении, то выбор метода реализации должен быть предельно полно обоснован. Допуотима и двойная реализация уотройотва о пооледуюшим сравнительннм анализом вариантов в курсовой работе.

При региотровом методе реализации цифрового уотроиства необходимо обосновать выбор одного оптимального варианта из неокольних возможных вариантов. Сравнение вариантов п выбор проотениего решения может производитьоя на различннх этапах: ооотавления охемн алгоритма, операционного описания уотронотва, разработки функциональнод, а также принциппальнон охемы уотронатва. Возможна реализация нескольких вариантов с последуощим сравнительным анализом в конце куроовой работы.

Рекомендуется в качеотве одного из направленйй регпотровой реализацип иопользовать стаядартную структуру микропроцеосорного

вычиолдтеля на КР580BM80, для которой в обязательном порядке соо тавляетоя программа на языке ассемблера [17, 18]. Могут бнть иопользованы микропроцеосоры КІ8ІОВМ86, KI8IOBM88, KPI82IBM85 [I9, 22] п др. Программа отлахиваетоя на пероональных ЭВМ, микроэВМ или на лабораторнои микроэвМ "Микролаб". В пооледнем случае ассемблерная программа вручнуо транолпруетоя в прогремму на машинном языке в одотеме команд мдкропроцесоора КР580вМ80.

Обоуддение вариантов решения ведетоя в оловеоной форме, общеи для различных методов техвического решения задачи. При необходимости могүт привлекаться методы задания комбпнационвых охем, алгоритмичеокие п язнковне оредотва опиоания функционирования операдионhax yотройотв.

I.3.3. Соотавление охемы алгоратмв

Первонячальное формализованное описание функционирования уотронотва внголняетая о помощвь охемв алгоритма. Она вклочает в оебя оовокупнооть операторов преобразования и операторов перехода (рис. I.I). Схема начинаетая с оператора "Начало", который может обозначать вклочение устроиства, пнициализацир начального ооотояния, начало обработки входных оигналов и т.д., и завершается оператором "Конец", которыи может обозначать окончание обработки очередного кода, переход в реким ожидания, выклочение уотроћотва и т.д. Рекомендуетоя использовать операторн переходов на два направления, хотя применение переклочателен на оольмее чиоло переходов также допуотимо. На степень детализации алгоритма никаких ограничении не накладываетоя, необходимо оледить лишь за тем, чтобы разветвления п циклы проявдяли себя в охеме алгоритма явным образом.

Prc. I.I
Желательно, чтобж в операторах преобразования и переходов имена шии и операціонннх элементов использовались явно. Уоловия переходов долхны записываться содермательно в виде логичеоких или арифметичеоки вырамении, а не в виде переменнои, обозначаемои $P_{i}{ }^{\circ}$. Использование пдентцфикаторов допуотимо, еоли они явлнотоя именами разрядов уотронств или шин. При соотавлении охемв алгоритма целе-

сообразно отделять деиствия, выполняемые человеком-оператором, от действий, выполняемых устройством управления, так как только пос ледние требуот технической реализации.

Если разрабатывается несколько алгоритмов, то их предотавление должно быть предельно идентичным, поскольку только в этом олучае можно качеотвенно и количеотвенно сравнивать предлагаемне решения.

1.3.4. Соотавление операдионного описания

Операционное опиоание синтезируемого уотройотва составляетоя на учебном язнке операционного описания (УЯОО). Возможно использование язнков описания цифровых уотройотв и язнков региатровых передач, применяемых для моделирования сложнвх цифровнх уотронотв.таких, нак языки $C D L, D D L[7, I 0]$.

Операционное опиоание являетоя выражением алгоритма в терминах действий, выполняемых операционными элементами, - микроопераций. Поэтому при описании внутренних переменных надо учитывать имеющуося в распоряжении разработчика элементную базу. Для упромения операционного описания допускается вводить в него нестандартнне элементы, например трехвходовые сумматоры или регистры, осуществляющие одвиг на 72 разрядов. Такие элементы должвы оыть описаны в виде программных модулей операпионного описания.

При составлении операционного опиоания могут бнть ныявлены неточности в решающем алгоритме, которые потребуют либо изменения пооледовательнооти микрокоманд, либо вюлючения новых микрокоманд. В этом олучае исходннй алгоритм обязательно исправляетоя. Таким образом, должно отрого соблодатьоя однозначное соответствие схемы алгоритма и операционного описания. Если замечено хоть малейпее отклонение одного от другого, то соответствие должно оыть восотановлено изменением либо схемы алгоритма, либо операционного опиоания.

При переходе от схемы алгоритма к операционному опиоанио необходимо учитывать параллельнооть протекапцих в уотройтве процеясов. Это обстоятельство заставляет особенно внимательно подходить к последовательной запиои одновременно реялизуемых операторов.

Для упрощения управляющего автомата выделнют совмеотнне, уоловно-эквивалентные и эквивалентные по управленио микрокомаяды. Операционное описание перепионваиот в терминах эквивалентннх управляюцих сигналов, учитывая, что уоловно-эквивалентнне. оигнали формируютоя непосредотвенно в операционном автомате.

I.3.5. Построение фунвциональнод схемн операционного автомата

Функциональная схема операционного автомата ($O A$) должна включать набор операционных элементов, связи между ними, связи этих әлементов с входными п выходнвми шинами устройства, связи с управляойм автоматом (JA).

I.3.6. Поотроевие фуннциональной схемы управлнощего автомата

На этом этапе работы рекомендуетоя строить УА в двух вариантах - о жеоткой и программируемой логикой.

При поотроении УА с жесткой логикой можно использовать как идеи клаооического синтеза конечных автоматов [I3, I4], так и идеи реялизации УА на счетчиках, раопределителях импульсов и дешифратоpax [I6]. Выбор метода поотроения определяетоя вкуоами разработчика.

Для построения управляюцего автомата с жесткой логикой в виде конечного автомата оледует получить граф переходов и выходов. Цля этого необходимо построить граф-схему алгоритма. На схеме в операторах преобразования указываютоя только управляюиие сигналы без перечиоления выполняемых под их воздейотвием микроопераций; в операторах перехода указываютоя только переменные условия перехода, а направления переходов отмечаются значением этой переменной - 0 или I. Переход от граф-схемн алгоритма к графу переходов и внходов автомата осуществляетоя в соответотвии с методикой, изложенной в [I5]. Oи соотавлнетоя как для автомата Мура, так и автомата Мили, пооле чего выбирается лучший автомат с меньшим числом состояний.

Внбор метода адресации для УА с программируемой логикой определяется характером решающего алгоритма - отношением числа операционных мдкрокоманд к числу управляюии микрокоманд. Как правило, лучшие результаты дает применение "естественной" адресации. Тогда работа по оозданию УА будет заключатьоя в поотроении стандартной структуры УА, выборе элементов и написании соответствующей микропрограмма. На этом этапе работ целесообразно рассмотреть и обсудить несколько вариантов форматов микрокоманд и внбрать оптимальн 4 这.

I.4. ОФОРММЕННИE КVРСОВОЙ РАБОТЫ

Куроовая работа оформляется в виде расчетно-пояснительной запиоки, включающенй рукописный текст и графику общим объемом 25 -

30 страниц формата А4. Запиока должна включать следуюцие основнне разделы, расположеннне в порядке выполнения работы:
I) оглавление;
2) задание на проектирование;
3) выбор направления решения;
4) схему алгоритма функционирования устройства;
5) операционное описание уотройотва;
6) функциональнуо схему операционного автомата;
7) функциональнуо охему управлнощего автомата;
8) принципиальную схему уотроиотва;
9) построение уотроиотва в виде микропроцессорного вычиолителя;

IO) заключение;
II) список использованнои литературн.

Схемв алгоритмов и принципиальнне схемы должны ввполнятьоя в соответствии с требованиями ТОСТ и ЕСКД $[36,37]$. Все рисунки нумеруются и помещаютоя в запиоке пооле первых соылок на эти рисунки. Еоли риоунок выполнен на отдельном листе, то он помещается за страницей текста, содержащей осылку.

В запиоке не допуокаетоя сокращение слов, кроме общепринятых (ЭВМ, МІІ, ОЗУ, ПЗУ и др.). Все нестандартные аббревиатури должнн быть обязательно распифрованы. Формулы, приводимые в запиоке, могут иметь номера, на которые можно соылаться в тексте. Номера размещатотоя о правой стороны у кромки листа в круглых скобках.

Записка вкладнваетоя в обложку из ватмана п орошоруетоя. Лицевая сторона обложки является титульным листом и оформляетоя так, как показано на рис. I.2. При оквозной нумерации страниц в записке этот лист очитаетоя первой отраницей. Титульныи лиот подпионваетоя студентом и преподавателем.

При оформлении работы в записке должен найти отражение не только наилучший вариант, но и материал, демонотрируошии весь путь движения к цели. Оформление запиоки производится по частям в порядке завершения работы над отдельными ее разделами.

I.5. КАЈЕЕЦАРНЫЙ ІІЛАН ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ

Руководство курсовой работой и ее организацио осуществляет нафедра. Календарный план являетоя графиком работы студентов и кафедра строго следит за его выполнением. Каждый студент обязан один раз в недель отчитнватьоя перед преподавателем о проделанной рабо-

МОСКОВСКИЙ ОРДЕНА ЛЕНИНА И ОРДЕНА ОКТЯ БРЬСКОЙ РЕВОЛКЦИИ АВИАЦИОННЫЙ ИНСТИТУТ имени СЕРГО ОРДКОНИКИДЗЕ

Кафедра 403

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовод работе по дисциплине
"Ввчдолительвне системь п микропроцессорная техника"

ВыПолняд отудент группн

Консультировал
\qquad
подпиоь, дата
\qquad Фамилия И. 0.
подпись, дата

те. Преподаватель еженедельно определяет процент выполнения студентом куроовой работы. Эти даннне вывешиваются на специальном стенде кафедры.

Примерныћ календарныд план выполнения работы рассчитан на I7 недель и приведен в табл. I:

Таблица

$\frac{H}{\text { I } / \square}$	Наименование этапа работы	Неделя	0бъем, \%
I	Изучение задания	I	I
2	Разработка охемы алгоритма	3	20
3	Составление операционного описания	4	25
4	Построение функциональной схемы устройтва	6	35
5	Построение принципиальнон схемы уотроиства	10	50
6	Разработка программн пля МІІ вычиолителя	I2	60
7	ОФормление записки	I5	90
8	Запита куроовой работы	I7	100

Защита курсовой работы проиоходит перед комисоиеи, в которую облзательно входит и преподаватель-консультант. Защита может ооуществляться в приоутотвии всей учебной групы.
2. ПРИМЕР ПОСТРОЕНИЯ ЦИФРОВОГО УСТРОИСТВА

На примере решения демонотрационнои задачи покахем веоь путь внполнения куроовои работы от поотановки зядачи до получения принципиальной схемы реального устроиатва.

2.I. ЗАІІАНИЕ НА IIPOEКТИРОВАНИЕ

Первоначальная формулировка задания выглядит следуюшим обра30M:

на вход уотройттва приходит 32-разрядны параллельнын код A $\{I: 32\}$; на выходе уотройотва сформировать код $B\{I: к\}$, отобрехавщии чиоло единиц кода А.

Такая формулировка являетая явно недостаточной. Дейттительно, задание на преобразование кода А в код B требует дополнительной информации:
I. Каков период T поотупления входных нодов, околько времени отводитоя на преобразование? Техническое решение естественно будет разным в олучае разделения входных кодов интервалами в 100 нс, I мко п ІО мкс. Коды могут поступать асинхронно пооле преобразования предыдущего нода в уотройотве. Еоли значение T не задаетая, то иожно раоомотреть неоколько вариантов построения уотроиства, оценить их бнотродейотвие и определить облаоть их применения.
2. Каким образом оинхронизируется работа устроиства с источником и потребителем информации? Примем, что источник входного кода гарантирует правдльнооть выставленной инф̆ормации во время деиствия отробирувщего импульоа СТРОБ, а само устройство подтверядает выдачу кода числа единичных символов генерапией импульса очитывания УСЧИТ.

Здесь же решается вопрос о внборе тактовой синхронизирующей пооледовательнооти импульоов: или она будет общей для источника, уотройотва преобразования и потребителя информации (внешняя оинхронизация), пли она будет формироваться с помощьь автономного генератора тактовнх импульсов (ГТИ), установленного в разрабатываемом уотронотве (внутренняя синхронизация). Выберем внешнню синхронизацив с частотой ГІИ - 5 МГц.

При внешней синхронизации необходимо уточнить привязку входннх и выходных сигналов по отношению к тактовой пооледовательнооти импульоов. Будем очитать, что смена кодов А и В осуцествляется по положительному Фронту импульоов ГТИ, длительность импульсов СТРОБ и УСЧИТ равна периоду тактовой последовательности и положительнне Фронты этих импульсов появляютая вслед за положительным Фронтом импульоов ГТИ.
3. Каково отображение кода А в код B ? Для решения задачи необходимо уотановить однозначное соответствие между кодом В и кодом $А$. Это соответствие определяетоя многими факторами: удсоитвом оценки, необходимоотьд передачи на уровне помех, требованиями использования кодов для обнаружения и иоправления ошибок, удоботвом индикации и многими другими факторами.

Примем, что выходной код $B\{I: к\}$ - двоичннй позиционный код, чпсленнни аквивалент которого равен числу единичннх оимволов кода А $\{\mathrm{I}: 32\}$. Легко заметить, что макоимальное чиоло "единиц", равное 32, потребует формирования шеотиразрядного ныходного кода $B\{I: 6\}$, так как $(32)_{\text {IO }}=(100000)_{2} \quad(32$ д $=100000 B)$.

В качестве сопутствующей можно рассмотреть задачу формирования выходного кода в двоично-десятичном представлении. Разрядность при I2

этом не изменится: потребуется тетрада для формирования младшей цич̆рн ($0-9$) и два двоичннхх разряда для предотавления отаршей цифры (0-3). Представляет интерес введение контрольного разряда $\mathrm{B}\{7\}$ для проверки нода на четность (нечетность) при передаче по каналу связи.

Итак, задание на проектирование может оыть выражено в виде функциональной охемы и эпюр напряжения, изображенннх на рио. 2.I.

Pac. 2.I
Примем, что в разрабатываемом уотроистве не требуетоя введения внутренней индикации, и не будем пона накладывать никаких ограничений на потребляемур уотроиством мощность и, следовательно, на выбор оптимальной элементной базн. Эти вопросы могут онть решены при дальнейшей работе над заданием.

Разработка схемы уотройотва начинаетоя с главного вопроса определения метода поотроения уотройотва как комбинационного или как регистрового. Согласно заданию устройство преобразует входной параллельндй код в выходной, поэтому оно может бнть поотроено и нак комбинационное, и как регистровое. Рассмотрим оба варианта, сравним сложность их реализации и определим область применения.

2.2. КОМБИНАЦИОННАЯ РЕАЛИИЗАЦИЯ УСТРОИСТВА

При поотроении уотроиотва в виде комбинационной охемы надо решить задачу синтеза системы шести логических функции 32 переменных. Эта задача доотаточно оложна и в условиях ограниченного времени проектиронания решена быть не может.

К решенио задачи можно подойти о позицай операционного синтеза, построив устройство, реализующее цепочку проотых преооразований. Разобьем входной код на такие части, для которвх решение за-

дачд преобразования "числа единиц" в позиционный двоичный код являетоя практически реализуемым. Разобьем входной код на четыре части: $A\{I: 32\}=A\{I: 8\}$. $A\{9: I 6\}$. $A\{I 7: 24\}$. $A\{25: 32\}$.

Каждын байт преобразуется в чиоло единиц с помощью цифрового уотроиотва, которое назовем преобразователем кода п будем обозначать через $\cap P_{i}\{I: 4\}(i=I, 2,3,4)$. Тогда

$$
B\{1: 6\}=\Pi P 1\{1: 4\}+\Pi P 2\{1: 4\}+\Pi \rho 3\{1: 4\}+\Pi P 4\{1: 4\}
$$

Будем формировать сумму в два этапа - суммированием нодов пары преобразователен п суммцрованием полученных сумм:

$$
\begin{gathered}
\text { P1.SM1 }\{0: 3\}=\Pi P 1\{1: 4\}+\Pi P 2\{1: 4\} \\
\text { P2.SM2 }\{0: 3\}=\Pi P 3\{1: 4\}+\Pi P 4\{1: 4\} \\
B\{1: 6\} \equiv S M\{0: 5\}=0 . P 1 . S M 1\{0: 3\}+0 . P 2 . S M 2\{0: 3\}
\end{gathered}
$$

Здесь PI п P2 - сигналн переноса 4 -разрядных сумматоров $S M 1$ и $S M 2$.
Функциональная схема уотроиотва изображена на рис. 2.2. Сигнал УСЧИТ образуется путем задеркки сигнала СТРОБ на максимально возможное время формирования выходного кода. Оно зависит от выбранной әлементной базы.

Для поотроения сумматоров $S M 1$ и $S M 2$ воспользуемся микросхемой КІ55ИМЗ (4-разрядный сумматор), а для построения сумматора SM микросхемами KI55ИМЗ, KI55ИМ2 (KI55ИM2 - 2-разрндный оумматор). Задержка в формировании выходного сигнала этими сумматорами составляет не более 40 нс.

Рис. 2.2

Pro. 2.3

Преобразователи кодов ΠP_{i} являютоя нестандартными устройствамп. Анализ показывает, что иппользование логичеоких әлементов
(элементов с "жесткой" отруктурои) приводит к очень объемвон реализации. Возникает мыоль об иопользовании программируемех отруктур - электрически программируемых поотоянннх запоминагии устроиотв (ПІЗУ) или программируемых логических матриц. Первая отруктура более доотупна; поэтому будем иопользовать микросхему КР556РT4, изображеннуо на рис. 2.3. Эта микросхема совместима о ТТЛ-элементами (ТТЛ - транзисторно-транзпоторная логика) и обеппечивает задержку не более 70 но. Программирование этого ПІЗУ будем проводить по таблице истиннооти функции преобразования 8-разрядного кода в 4-разрядный (табл. 2).

Таблида 2

$A O$	$A I$	$A 2$	$A 3$	$A 4$	$A 5$	$A 6$	$A 7$	$D O$	$D I$	$D 2$	$D 3$
0	0	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	0	0	I	0	0	0
0	I	0	0	0	0	0	0	I	0	0	0
I	I	0	0	0	0	0	0	0	I	0	0
-	-	-	-	-	-	-	-	-	-	-	-
I	I	I	I	I	I	I	I	0	0	0	I

Проектируемое уотройотво строитоя на воовми норпусах микросхем. Оно может использоватьол в системах, в которых допуотимое время формирования выходного кода не превншает I50 но: деиотвительно, задержка выходного кода

$$
\begin{aligned}
\tau= & \tau(\cap \cap 3 Y)+\tau(S M 1, S M 2)+\tau(S M)=\tau(K P 556 P T 4)+\tau(K 155 \mathrm{HM} 3)+ \\
& +\tau(K 1554 M 3+K 155 \mathrm{MMZ})=70+40+40=150 \mathrm{HC} .
\end{aligned}
$$

Преобразователь на стандартних логичеоких элементах может бнть поотроен из двух 4-битовых преобразователей и 3 -разрядного сумматора. Еоли XO, XI, X2, X3 - оиты 4-разрядного поля входного олова, Y О, YI, Y2 - биты выходного олова 4-битового преобразователя, определяюцего двоичный позяционный код чиола единиц поля входного олова, то, раосматривая $Y О, Y I, Y 2$ как логические функирии переменних XO, XI, X2, ХЗ, получим оледуюиие логические выражения выходов преобразователя для реализации на элементах И-НЕ и ИСКПоЧАКШЕЕЕ ИЛИ (mod 2):
$Y 0=A 0 \bmod 2 A 1 \bmod 2 A 2 \bmod A 3$,
$Y 1=(A O / A 2 / \overline{A B}) /(A O / A 1 / \overline{A Z}) /(\overline{A O} / A 2 / A 3) /(A O \mid \overline{A 1} / A 3)$, $Y 2=A 0 / A 1 / A 2 / A 3$.

Преобразователь на восемь разрядов, поотроенний из двух 4-бвтовых преобразователей на элементах KI55ЛНI, KI55ЛII5, KI55ЛА4, KI55ЛА2, КІ55,ПАІ, КІ55ИМЗ, содераит двенадцать корпуоов вместо одного корпуca IIIBy.

2.3. РЕТИСТРОВАЯ РЕАЛИЗАЦИЯ УСТРОЙСТВА

Комбинационная реялизация разрабатнваемого уотронотва имеет крупный недоотаток - объем уотроиотва раотет пропорционально плине входного кода. Поэтому целесообразно комбинационнуо реализацрио применять при длине кода не более 32 бит. В ряде практических случаев приходится подочитнвать чиоло единиц в многоразрядннх олова́х, длина которых заранее не определена. Отопда следует, что преобразователь "чмола единиц" в двопчный позицооный код должен онть более гибким, более универоальным.

В оонову поотроения региотрового варианта устронотва полошим идеш преобразования параллельного кода в пооледовательный о последуоцим очетом числа единичньх оимволов. Такое преобразование должно начинаться о момента прихода входного кода и оигнала СТРОБ и заканчиваться моментом окончяния очета единичвых оимволов о генерацией пмпульоа очптывания. Таким образом, задача преобразования раопадаетоя на две подзадачп: преобразование параллельного кода в последовательнни п получение внходного кода о формированием УСЧИТ.

Первая подзадача решаетая пвумл путями: первнй состоит в использовании мультиплексора, второй - одвигового регистра. Первнй вариант требует фикоации входного кода на вое время преобразования. Второи вариант являетоя оолее универсальньм. Для его реалпзапии доотаточно выотавить входнои код $\mathrm{A}\{\mathrm{I}: 32\}$ на время спгнала СТРОБ. В учебном поообии расомотрим только второй вариант, хотя первии вариант также предотавлнет интерес п может оыть проработан в курсовои работе как альтернативннй вариант.

Вторур подзадачу - формдрование выходного кода - можно решить либо путем ооздания детерминированной последовательнооти управляющих аигналов одвига всех разрядов кода через внходной разряд региотра, либо формированием признака очищения региотра от единичных оимволов в процесое одвига. Первый вариант потребует уотановки до полиптельного счетчика циклов, второн вариант - введения охемн анализа содержимого региотра на вулевое значение. При несколько оольmих затратах второи вариант обөспечивает в ореднем более быстрое преобразование, поокольку пооледние нули кода преобразованио не подвергантоя. Примем второн вариант определения конда преобразова16

ния в качестве рабочего, тогда, еотеотвенно, применение одвигового региотра становитоя обязательным.

2.3.1. Разработка схемы алгорятма а соотавленде операционного опиоания

Схема алгоритма преобразования по выбранному варианту изображена на рис. 2.4. Составим соответствуодее ен операционное опиоание оинтезируемого уотроиства (рис. 2.5).

В теле процедурк микропрограм мы у переменных РГД п СЧЕ опущено поле разряднооти. В этом олучае его значенде беретоя пз раздела опиоания переменных микропрограммн. Под воздеиотвцем оигнала ЈСЧИТ не выполняется никакой операции. Этот факт отобрамается запиоы охмвола ";" волед за оимволом ":", что равносильно введению пуотой микрооперации.

Анализ макропрограммы показнвает, что оигналы УЗАП п УН эквивалентны п их мохно заменить одним сягнелом УЗП: УЗП $=$ УЗАІ $=$ УН. Проверку на ноль содержимого регистра РГД можно ооуществить с помощьь операции ИЈи-НЕ (отрелка Пиров):

$$
\rho \mathcal{Z}=V_{i=1}^{3 \mathcal{2}} P \Gamma Д\{i\}=\downarrow \text { PГД }\{1: 32\}
$$

Puc. 2.4

Текот микропрограммн, учитываюиии вышесказанное, предотавлен на puc. 2.6.

2.3.2. Разработжа функциональнон охемы уотроиотва

Функциональная схема операционного автомата, составленнан в соответствии с микропрограммой 2 , изображена на рис. 2.7.

Задачи, решаемве управляющим автоматом, достаточно прооты: он генерирует управляощие сигналы одвига УСДВ до момента появления признака обнуления P 2 , пооле чего формирует импульс считывания УСЧИТ. УА может оыть поотроен как о жесткой логикой, так п с программируемой логикой. Рассмотрим оба опоооба реялизации.

УА о жесткой логикой реализуетая либо в виде нласоического конечного автомата, либо в виде раопределителя импульсов. Конечний автомат может быть построен п как автомат Мура, и как автомат Мили. Поотроение графоов переходов и внходов уА осуществляется на основании отмеченных грап̆-схем алгоритмов [I5]. На рио. 2.8 поотроенн граф-схемн алгоритмов для автоматов Мура (а) и Мили (σ), соответатвуюцие микропрограмме 2 на рис.2.6 и учитывапщие тот факт, что сигналн УСЧ и УСДВ являютоя оовместными. Метки a_{i} отображартся в состонния автоматов, условия PI, P2, P3 определяют значения входных сигналов, а управлнюшие сигналы - значения выходных

Таблица 3

$a(t)$	a_{0}	a_{1}
	0	1
000	0	1 YCAB
$0 \quad 0 \quad 1$	0	1 प्रC4, yCAB
$\begin{array}{lll}0 & 1 & 1\end{array}$	-60	-(0) - (x+4nm)
0010	0	0 y \¢4kr
110	1 y3n	0 y y<4\%r
$\begin{array}{lll}1 & 1 & 1\end{array}$	-(1) $\times 33$	- (0) \quad (y<4ut)
$\begin{array}{llll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}$	$1{ }^{1} \times 138$	1 y 1 y $4, y<A B$
1000	1.837	$1 \times$ YСAB

сигналов автоматов. Грады переходов для автоматов Мура а Мили, полученные из граф-схем алгоритмов, изображены на рис. 2.9,а и б.

Будем строить УА как автомат Мили, поскольку он имеет только два состояния и реализуетоя на одном триггере. В качеотве по-

Рис. 2.8

Рис. 2.9

оледнего возьмем Д-триггер. На основании таблицы переходов и внходов УА (табл. 3) пооле доопределения запрещенньх комбпнапии получим функцию возбуждения триггера и выражения пля управлнпцих оигналов: $\quad D=P 1 \cdot \bar{Q}+\overline{P 2} \cdot Q$,

$$
\begin{align*}
& Ч 3 \Pi=P 1 \cdot \bar{Q} \\
& Ч C 4=Y C Z B \cdot P 3 \tag{2.1}\\
& Y \subset 4 U T=P 2 \cdot Q \\
& Y \subset \square B=\overline{P 2} \cdot Q
\end{align*}
$$

Функциональная схема УА приведена на рио. 2.IO, сигнал СБРОС являетоя уотановочннм и формируется при вюючении пптания или от к нопки.

Управляюций автомат п программируемо连 логакой

Составим каноническую форму микропрограммы оинтезируемого операционного уотройотва о учетом эквивалентнооти оигналов УЗАПl, УН и оовместимости сигналов УСЧ, ЈСДВ в виде табл. 4.

Таблица 4

Homep	Метка	Управляхиие сигналн	Переход
0	MI		Еоли 7 PI , то MI
I		УЗІ	
2	M2		Еоли Р2, то M4
3			Еоли 7 РЗ, то МЗ
4		уСч, усдВ	
5			Идти к М2
6	M3	усдВ	
7			Идти к М2
8	M4	УСЧиT	
9			Конец

В олучае принудительной адресации строки 4 и 5,6 и 7, 8 и 9 можно объединить. Тогда каноническая форма операционного описания оудет на три отроки короче (табл. 5).

Таблида 5

Номер	Метка	Управлнопие одгналы	Переход
0	MI		Еоли 7PI, то MI
I		У3II	
2	M2		Если P2, то M4
3			Еоли 7 P3, то M3
4		УСЧ, УСДВ	Идти к М2
5	M3	усДВ	Идти к М2
6	M4	уСЧит	Конед

Формат комаяды с принудительнои адресацией имеет вид [12]

\section*{| УЗП | YCY | YC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Для естеотвенной адреоация имеетоя два формата микрогоманд [I2]

0	YЗП	УС4	УСПВ	УСЧИT	-	-	-
I	$\mathrm{X} \overline{\mathrm{PI}}$	XP 2	$\mathrm{XP3}$	AB	A 2	AI	AO

Первыћ разряд формата микрокомандд УА с естественной адресацие определяет признак микрокомандн: 0 - операционная микрокоманда, I - управляпцая микрокоманда.

Учитывая, что табл. 4 дает каноничеокое описаяие микропрограммн для УА с еотественно адресаиией, получаем кодовне выражения микропрограмм для УА о еотественной адресадией (табл. 6) и о принудптельной адресациен (табл. 7):

$$
\text { Таблада } 6
$$

Таблица 7

Из сравнения табл. 6 и 7 оледует, что для хранения мякропрограмм с естественной адресацией требуетая 80 бит, а для УА с принудительной адресацией -
70 оит. Таким ооразом, peaлизация УА с принудительнон адресациен в нашем случае более желательна.

На рис. 2.II изображена функциональная схема УА с принудительной адресацией. Управляюпиие сигналь формпруртоя региотром микрокоманды (РМК), в которыіи мдкрокоманда перепионваетоя из ПЗУ микрокоманд по адресу, находящемуся в счетчике адреса (СЧА). Регистр РМК тактируетоя последовательнооть τ_{1}, а счетчдк апреоа СЧА - после-

Рис. 2.II довательноотьр $\tau_{2}: \tau_{1} \& \tau_{2}=0$. Начяльнни адрес микропрограммн, равныи 000 , устанавливаетоя аигналом СБРОС, и УА ждет прихода сигнала СТРОБ для продолжения раооты.

Не будем приводить принципиальную схему УА, поскольку она является стандартной. Пусть переход от функциональной схемы УА к принципиальной, внполненной на заданной элементной базе, отанет ооставной частьо проекта.

При построеняи принципиальной охеміі внберем УА о жеоткой логикой, поокольку он имеет более простую организашию, чем УА о программируемой логикой.

2.3.3. Построение приндппиальной охемв

Будем строить наше уотройатво на элементах серии КІ55 и К555, так как они обеопечивают уотойчивую работу на заданной тактовой чаототе $5 \mathrm{MLц}$. Принципиальнне схемы уотроиства, поотроенные по функциональным схемам рис. 2.7 и 2.10 , изображенн на рис. 2.12 и 2.I3. Регистр данных РГД отроится на четырех микросхемах 8-разрядних сдвигаюцих региотров KI55ИPI3. Управляюшие сигналы SEO,SE1 обеопечивают запись кода А в регистр ($S E O=I, S E 1=I$) и одвиг влево (($E O=0, S E /=I$). Они формируютоя из управляпиих оигналов УА в соответотвии с уравнениями

Рис. 2.13

$$
\begin{aligned}
& S E O=43 \Pi, \\
& S E 1=43 \Pi+4 C D B=\overline{43 \pi}+\overline{4 C D B} .
\end{aligned}
$$

Здесь с учетом логических выражений (2.I) и выбранной элементной базы

$$
\begin{align*}
& \overline{4 B \Pi}=P 1 / \bar{Q} \\
& Y C A B=\overline{P Z} / Q \tag{2.2}
\end{align*}
$$

Сигнал возбуждения Д-триггера на микросхеме $D D I 4$ типа КI55TM2, иопользуемого для построения УА, на основании (2.1) и (2.2) запишетоя следуюцим образом:

$$
\begin{equation*}
D=(P / / Q 1) /(\overline{P 2} / Q)=\overline{43 \pi} / \overline{4 C D B} . \tag{2.3}
\end{equation*}
$$

Счетчик собираетоя на микросхеме КБ55ИЕІ9, включающей два 4-разрядных асинхронных очетчика с пооледовательным переносом. Для его работы сигнал УСЧ необходимо стробировать тактовыми импульсами IK :

$$
4 C 41=4 C 4 \cdot \tau=(4 C A B \cdot \rho 3) \tau=\overline{4 C A B} \downarrow(\rho 3 / \tau)
$$

Сагнал УСЧИТ в соответствии с (2.I) формируетая на элементе DDI2.4, выполннащем фуннцию ИЛН-НЕ (стрелку Пирса):

$$
S C U U T=P 2 \cdot Q=\overline{P Z}+\bar{Q}
$$

При его фооммровании необходимо организовать такой временной интервал между пооледним импульоом УСЧІ и УСЧит, чтооы гарантировать завершение всех переходннх процеосов в последовательном счетчике на К555ИEI9 (60 но на четыре разряда, 90 но на шеать разрядов). Работа устройства демонотрируетоя эпорами напряженлй на рис. 2.I4. Суммарнан задержка фронта импульса УСЧиТ относительно среза импульса УСЧI - не менее 100 но. Таким образом, к началу импульса УСЧИТ все переходнне процеоон в счетчике $D D I 3$ завершатся, и выходной код B $\{I: 6\}$ уотановитоя.

Устроиотво требует для своего построения I4 корпуоов микросхем, среди них: по четіре микросхемы КІБ5ИРIЗ и КІ55JIEЗ, по однодй микросхеме KI55JАД, KI55TM2, КБ55ИEI9, KI55JАА и две микросхемы K555JIEI.

Pис. 2.14
Разработанная схема обеппечивает время преобразования от 0,25 мко (нулевой код) до 6,25 мко (код всех единиц) при потребляемой от источника +5 B мопнооти $3,5 \mathrm{Br}$:

2.4. ПОСТРОЕНИЕ УСТРОЙСТВ В ВИДЕ МИКРОІРОЦЕССОРНОРО ВЫЧИСЈИТЕНІ НА БИС КР580BM80

іикропродессорный внчислитель имеет отандартную структуру. Іоэтому его схему строить не надо. Единственной задачей остаетоя создание програмиируемого контроллера интерфейса, обеспечивающего подключение к вычислителю иоточника и потресителя информации, управлнющей программы обмена контроллера, называемой прайвером, и обрабатывающей программы.

В отличие от рассмотренных ранее вариантов построения преобразователя в виде самоотоятельного уотройства для микропроцессорного варианта подсчет числа единиц кода ооуцествляетоя с помощыо обрабатывающей программь. Іоэтому ее написание и отладка являетоя важным этапом в построении уотройтва, включающем оледующие шаги:
I) разработку обрабатывающего алгоритма;
2) составление программы на языке ассемблера;
3) отладку и выполнение программы.

Т'ретий шаг требует дополнительных пояснений. Отладку и выполнение программы можно осушествить либо на микроэВМ и персональных ЭВМ, имеюших транслятор о языка ассемблера КР580ВМ80 или языков ассемблеров, включающих его как подмножество, либо на лабораторной

микроЭВМ "Микролаб". В последнем случае необходимо внполнить ручное ассемблирование программы.

При составлении алгоритма необходимо учитывать, что микропроцессорный внчислитель имеет байтовую организацию памнти и 8-разрядную шину данных. Обобщим исходнуо задачу, полажив, что входной код, число единиц которого подочитывается после размещения его в памяти, занимает массив из ॠ байтов.

Схема алгоритма изображена на рио. 2.I5. Алгоритм включает в себя два цикла: подсчет числа единиц в текущем байте и накопление единиц при просмотре всех байтов. Входной код размещается в массиве БАЙТ ПАННЫХ. Положение текущего байта в массиве определяется счетчиком байтов СЧ_БАЙТ. Положение текущего бита этого байта, предварительно помещенного в аккумулнтор, определяется СЧ_ЕИТ.

Программа, реализованная по данному алгоритму, предотавлена на рис. 2.I6. Просмотр битов текүщего байта осуществляется путем одвига аккумулятора, при этом анализируемый оит кода формирует значение признака переноса С. Окончание проомотра осуществляетоя по нулевому содержимому счетчика битов, раположенного в регистре B. Просмотр байтов кода завершается, когда обнуляетоя очетчик байтов, расположенный в регистре С. Программа загружается в ОЗУ по адресу 8000.

Для уєпешного выполнения курсовой работы необходимо, чтобы студент умел пользоваться и ориентироваться в научной и оправочной литературе по тематике курсовой работы. Чтобы помочь студенту в этом, ниже приводится указатель литературы, сгруппированной по отдельным разделам работы.

Поотроеняе управляоних автоматов

РЕКОМЕНДУЕМАЯ JIИTEPATYPA

Oодие вопроои

I. К а г а н Б.М. Электроннне вычислительные машины и оистемн. - М.: Энергоатомиздат, I985.
 ЭВМ: В 2-х кн. - M.: Мир, I984.
3. Бруснецов Н.П. Микрокомпьютеры. - М.: Наука,І985.
4. Г и л м о р Ч. Введение в микропроцессорную технику. M.: Мир, 1984.
5. Микропроцессоры: В З-х кн. / Под ред. Ј.Н. Преонухина. М.: Высшая школа, 1986.
6. Кондратьев Р.М., Мельников Б.С., Щегー л о в А.В. Архитектура микропроцессорных вычислителей. - М.: МАИ, I986.

Языки операционного описания, языки регистровых передач
и оинтез операционных устройств
7. Автоматизация проектирования вычислительных оистем, языки моделирования и базы данных / Под ред. М. Брейера. - М.: Мир,I979.
8. Проектирование цифровых вычиалительных машин / Под ред. С.А. Майорова. - М.: Высшая школа, I972.
9. Ма й о ров С.А., Н О вик о в Г.И. Принципы организаций цифровнх машин. - Л.: Машиностроение, 1974.

IO. Ч у Я. Организация ЭВМ и микропрограммирование. - М.: Мир, 1975
II. Силин В.Б., Мельников Б.С. Электронные вычиолительнне уотройства. Операционный синтез. - М.: МАИ, I982.
12. Силин В.Б., Мельников В.С., Кондратье в Р.M. Операционннй синтез цифровых уотройств. - М.: МАИ, I985.

ІЗ. Силин В.Б., Мельников В.С. Конечнне автоматы: Учебное пособие. - М.: МАИ, 1978.

І4. Л а з а рев В.Г., Пи ли Е.И. Синтез управляпиих автоматов. - М.: Энергия, 1978.

І5. Б а р а н о в С.И. Синтез микропрограммных автоматов. Ј.: Энергия, 1978.
16. Специялизированнне ЦВМ / Под ред. В.Б. Смолова. - М.: Высшая школа, 1981.

Программирование микропроцесоорних вычиолителе
I7. Григорьев В.Л. Програмнное обеопечение михропроцессорных опотем. - М.: Энергоатомиздат, 1983.

І8. Григорьев В.Л. Программирование однокристальнвх макропроцессоров. - М.: Эдергоатомиздат, I987.

Организация и технические оредотва микропроцеосорных оиатем

19. 以елкувов Н.Н., Диа а о в А.П. Микропроцесоорные средотва и системы. - М.: Раддо и связь, І989.
20. К о ф ф р о н Дж. Технические средства микропроцессорньх оиотем: Практичеккй куро. - М.: Энергоатомиздат, 1983.

2I. К о ф ф р о н Дж., Ј е н г В. Раоширение микропроцессорннх систем. - М.: Машиностроение, I987.
22. Микропроцессорныћ комплекг KI8IO: Структура, программирование, применение: Справочная книга / Под ред. Ю.М. Казаринова. М.: Радио и связь, 1990.
23. Ше екопляс Б.В. Микропроцессорнне отруктуры. Инженерные решения. - М.: Рядио и связь, 1986.

Схемстехника электронных схем

24. Титце У., Шевк К. Полупроводниковая схемотехника. - М.: Мир, I982.
25. Х о ровиц П., Х и л л У. Искусатво схемотехники: В 2-х т. - M.: Mир, 1983.

Справочная литература
26. Интегральдне микросхемь: Справочник / Под ред. В.В. Тарабрина. - М.: Радио и связь, I984.
27. Х вощ С.Т., Варлиноки Н Н. Н., П О п о в Е.А. Микропроцесоорн и микроэВМ в сиотемах автоматического управления: Справочник. - Л.: Машиностроение, 1987.
28. ІІІ и ло В.Л. Популярнне цифровые минросхемв: Справочник. - М.: Радио и связь, І987.
29. Цифровне и аналоговые интегральные микроохемы: Справочник / Под ред. С.В. Якубовского. - М.: Радио и связь, І990.
30. Применение интегральннх микросхем в электронной вычиолительной технике: Справочник / Под ред. Б.Н. Файзулаева, Б.В. Тарабрина. - М.: Радио и связь, І987.

3І. Пухальскй Г.И., Новосельдева Т.я. Проектиование диокретннх уотроћотв на интегральннх микросхемах: Справочник. - М.: Радио и связь, 1990.
32. Микропроцеосорн и микропроцессорнне комплекты интегральных микросхем: Справочник / Под ред. В.A. Шахнова. - М.: Радио и овязь, 1988.
33. л е б е д е в О.Н. Микроохемы памяти и их применение. М.: Радио и авязь, 1990.
34. Полупроводниковне вИС запоминаюцих устройств: Справочник / Под ред. А.10. Гордонова и И.Н. Дьякова. - М.: Радио и овязь, 1990.
35. Большие интегральные схемы запоминапиих уотройотв: Справочник. / Под ред. А.Ю. Гордонова п Ю.Н. Дьякова. - М.: Радио и связь, 1990.
36. Система документации единой системы эВМ / Под общ. ред. A.М. Лярионова. - М.: Статистика, I976.
37. у оатенко С.Т., Каченюк Т.К., Терехов а М.В. Виполнение электрическях схем по ЕСҚД: Справочник. М.: Изд-во отандартов, 1989.

[^0]: Типография издательотва МАИ
 I2587I，Москва，Волоколамское шоосе， 4

